Biomaterials from Regenerated Silk Fibroin

EXECUTIVE SUMMARY

Various novel methods for producing 3D porous biomaterials from regenerated silk fibroin (RSF) – which has wide ranging applications in tissue engineering, wound healing bandages, drug delivery, cosmetic applications etc.

TECHNOLOGY DESCRIPTION

NCL scientists have developed various processes for producing 3D porous biomaterials from regenerated silk fibroin (RSF). Our process for the accelerated gelation of RSF- resulting in a porous structure lowers the gelation time to a few hours instead of several days. The protein concentration can be between 0.1- 40%. It works in a broad pH range of 5 – 7.5, within temperatures ranging from 20-70°C. Another process using electrospinning of RSF from an aqueous solution, forms 3D porous structures (like non-woven mats) which have various biomedical applications. Surface modification of such biomaterials for improved performance is currently under progress.

MARKET POTENTIAL

- The market for biomaterials such as RSF was predicted to be of \$37.6 billion for 2011 and projected to reach \$64.7 billion by 2015*^
- The global market potential for tissue engineering and regenerative medicines has been expected to exceed \$118 billion by year 2013- mainly in the target potential areas of wound care and orthopaedics.**

VALUE/ADVANTAGES

- Free of microbial growth (superior performance of implants, lower toxicity)
- Shorter gelation time opens-up the potential spectrum of applications of the materials developed using this method
- Process is cheaper and faster (aqueous solution used instead of organic solventeliminates several intermediate steps)
- Implant that could be reproduced with great consistency and quality
- Wide range of pore sizes: 1-10 microns

APPLICATIONS

- In tissue engineering- as bio-degradable bioabsorbable scaffolds (due to lower inflammatory and superior mechanical properties) and damaged tissue regeneration (For ex. bone, nerves, ligament, etc)
- In wound healing bandages (provides a moist environment to facilitate re-epithiliazation, re-modeling of connective tissues and collagenization)
- As controlled drug delivery vehicles
- Silk fibroin peptides are used in cosmetics due to their glossy, flexible, elastic coating power, easy spreading and adhesion

TECHNOLOGY STATUS

- Demonstrated at the lab scale
- On the lookout for potential partners for licensing
- Patent application filed: PCT filed-PCT/IN2010/000506

CSIR-National Chemical Laboratory, Pune, India

^{*} http://www.the-infoshop.com/report/mama179926-global-biomaterial.html - viewed 16/05/11 ^ http://www.the-infoshop.com/report/inde180852-glob-biomaterial.html-viewed 16/05/11 **http://www.medicalnewstoday.com/releases/141341.php- viewed 18/05/11