Process yielding high value fuel additives (octane enhancers) from lignin

EXECUTIVE SUMMARY

Efficient process for the depolymerization of lignin to produce substituted phenolic monomer compounds that are further converted to fuel additives

BACKGROUND

Fuel additives like octance enhancers have been traditionally derived from non-renewable petroleum products. Renewable sources such as lignin are being explored as a source for producing fuel additives. A number of single step processes for depolymerization of lignin have been explored to date only with limited success. Existing two-step processes occur under harsher conditions (max reaction temperature can reach 420 - 900° C).

TECHNOLOGY DESCRIPTION

NCL scientists have developed an efficient 2 step process for depolymerization of lignin to substituted phenolic monomer compounds which could be further processed for use as high value fuels/additives. The process operates under milder reaction conditions (temperature range of 215- 250°C). The reaction time is of 5 mins to 2 hrs. Product yield is >25%.

MARKET POTENTIAL

• US market for specialty fuel additives including octane enhancers has been predicted to grow 2.2 percent annually to reach \$1.2 billion in 2012.*

* http://www.reportlinker.com/p0100129-summary/US-Specialty-Fuel-Additives-Market.html (cited- 21/05/2012),

VALUE/ADVANTAGES

- Yields fuel additives from a renewable source
- Milder reactions due to the solid acid catalyst used- work under 270° C
- Process is more environmentally friendly than the conventional processes due to the recyclable catalysts
- This process results in very little loss of the products in the form of gas or due to degradation

APPLICATIONS

• End products of the reaction can be used to produce high value fuel additives like octane enhancers

TECHNOLOGY STATUS

- Demonstrated at the lab scale
- On the lookout for potential partners for spinoff and licensing
- Patents filed: IN# <u>2889DEL2010</u>

CSIR-National Chemical Laboratory, Pune, India

Case Manager: Magesh. N. |+91-20-2590-2982|m.nandagopal@ncl.res.in