

INJECTABLE BIODEGRADABLE GELS WITH HYDROPHOBIC POCKETS/CAVITY FOR DELIVERY OF DRUGS

NCL Innovations: Solutions from CSIR India

Technology

OUR SOLUTION

- Hydrogels are 3-D polymer networks with an unique ability to hold water, maintaining semi-solid state giving them physical characteristics similar to soft tissues
- Their applications in biomedicine require them to be easily administrable as preformed hydrogels are difficult to mould to the cavity shape
- Hydrogels are hydrophilic, and it is difficult to load drugs into them, as most drugs are hydrophobic in nature
- Should be able to exist as flowable aqueous solutions before injection and immediately turn in to standing gels upon administration (*in situ* crosslinked)
 - The hydrogel disclosed here is in situ crosslinked (which makes it suitable for injectable systems), with one or more hydrophobic pocket(s) which can be used to deliver desired drugs
 - Delivers the drugs with desired release profile
 - Gelation time- 1 to 30 minutes; Degradation time- 1- 30 days; Storage modulus (capacity) from 5-110 Kpas
 - Comprises of a polymer backbone, a hydrophobic pocket (moiety being triclosan) and a water soluble cross linker for the formation of the gel (paclitaxel solubilized in alpha tocopherol)

Applications

In site specific drug delivery systems/depots

Many important drugs are hydrophobic in nature and need to be administered in a solubilized form for the expected therapeutic effect- using our gel system, which has hydrophobic pockets to hold these drugs, the drugs can be delivered directly

Biomedicine

- Cell growing depots for tissue regeneration
- Protective membranes for the treatment of wounds

Tissue engineering

- Space filling agents
- Delivery vehicles for bioactive molecules
- Tissue formation directing scaffolds

Market Potential

- □ There has been a growing demand for novel drug delivery technologies
- The US market for advanced drug delivery has been projected to exceed \$76 billion by 2014¹ and face a sales of \$153.5 billion by 2011²
 - Not many organizations exist which can fulfill the task of making such specialized delivery techniques on a large scale¹
- The worldwide market value for wound-care management is expected to come in at \$19.7 billion in 2016³
 - Companies are focused on delivering advanced treatments necessary to heal wounds and improve lives³
- The tissue engineering market in US is expected to reach \$50 million by the year 2015⁴ and the worldwide market is expected to pass the \$15billion mark by 2012⁵ signifying significant market potential for these gels

http://www.pharmameddevice.com/App/homepage.cfm?appname=100485&linkid=23294&moduleid=3162 (viewed 13/06/11) ¹ http://www.hbs.edu/units/tom/conferences/docs/Highly%20Responsive%20Hydrogel%20Scaffold.pdf (viewed 13/06/11) ² http://www.medtechinsight.com/ReportA125.html (viewed 13/06/11) ³ http://www.idataresearch.net/idata/articleUpload/28c541a169fa276c552233149a262fa2_1259794435_december2009.pdf (viewed 21/07/11)⁴ http://www.tissuegenesis.com/TGI%20Market%20Opportunity%20Brochure.pdf (viewed 21/07/11)⁵

Value

- Can be useful for administering agents such as drugs, proteins, etc.
 through various delivery profiles (slow, sustained, pulsatile release)
- Overcome the barrier of surgical implantation
 - Injectable & in situ cross linked
 - Biodegradable
- Does not require solvents as other biodegradable polymers might require
 - Solvents harmful to the human body
 - Some drugs may become inactive on coming in contact with the solvent
- In drug delivery applications, drugs can be loaded in the hydrophobic pockets present in the gels
- Provides precise control over the chain length, sequence and 3D arrangement of the polymer networks in the gels hence prevents side reactions caused which may influence their performance

Technology Status, IP Status

- Patent application filed
- Ready to be licensed/commercialized
- Demonstrated at lab scale

Links & References

PCT application filed

 Mooney, D. J. & Drury, J. L. (2003) Hydrogels for tissue engineering: scaffold design variables and applications, *Biomaterials*, 24, 4337-4351 (Review)

Contact Info:

Dr. Magesh N. Scientist, NCL Innovations National Chemical Laboratory Pune - 411008 Phone: +91-20-2590-2982 Fax: +91-20-2590-2983 Email: m(dot)nandagopal(at)ncl(dot)res(dot)in

Summary

Technology Summary	
Technology title	<i>In situ</i> biodegradable gel with hydrophobic pockets for delivery of desired agents
Industry /sector	Biomedical/Pharmaceuticals
Year of development	2009
Related patents (with links)	Patent application filed
Technology readiness level	Demonstrated at lab scale
Licensing status	Ready to be licensed/commercialized
Encumbrances	None
Availability	Yes

