

CONTINUOUS FLOW SYNTHESIS OF SULPHOXIDE COMPOUNDS FOR USE IN DRUG FORMULATIONS

NCL Innovations: Solutions from CSIR India

Technology

- Sulphoxide compounds such as modafinil/prazole compounds are currently produced by batch synthesis procedure
 - The process yields about 85% product over a duration of 1-4 hours under low temperatures- leading to long processing times
- A more efficient process is required at the industrial level
 - These compounds are mainly used as proton pump inhibitors
 - Which consumes less time and yields lower unnecessary side products continually unlike the batch synthesis procedure
- Our process is a continuous flow synthesis of sulphoxide compounds with reaction times of ≤ 1 minute
 - The reaction results in over 90% conversion and over 95% selectivity towards the target sulphoxide compounds (with less than 5% formation of undesired sulphone compounds)

Applications

- □ The process can be used to make the following drugs which are mainly used as proton pump inhibitors- used to make drugs to treat the acid-related diseases of the gastrointestinal (GI) tract
 - Such as omeprazole, pantoprazole, lansoprazole, tenatoprazole, rabeprazole, esomprazole
- The process can also be used to make drug molecules that can be used as modafinil compounds
 - Which can be used as central nervous system stimulants- wakefulness promoting agents*
 - In production of drugs which act as neuroprotective agents

Market Potential

- GI disorders have been projected to affect more than a 250 million people in the 7 large pharma markets by 2012¹
 - Overall GI tract disorders treatment market is expected to reach \$32.2 billion by 2014²
- In 2009, proton pump inhibitors were the third largest therapeutic class amounting up to \$13.6 billion of sales in the US³

Value

- Process capable of easy scale up
 - The process is continuous with the reaction time of ≤ 1 minute
- Results in high yield of the product with 95% of selectivity towards the sulphoxide compounds
 - □ Side product (sulphone compounds) formation-less than 5%
- \Box Conversion rate is > 90%
- The process provides an alternative solvent (to chloroform, which is a volatile solvent that evaporates at room temperature and changes the reaction mass)

Technology Status, IP Status

- Patent applications filed
- Demonstrated at lab scale
- Ready to be licensed/ commercialized

Links & References

Patent links

- Indian: 1392/DEL/2009
- WO/ PCT application: PCT/IN2010/000456
- Choe, J. et al. (2003) Micromixer as a Continuous Flow Reactor for the Synthesis of a Pharmaceutical Intermediate, Korean J. Chem. Eng., 20(2), 268-272

Contact Info:

Dr. Magesh N.

Scientist, NCL Innovations
National Chemical Laboratory
Pupe - 411008

Pune - 411008

Phone: +91-20-2590-2982 Fax: +91-20-2590-2983

Email: m(dot)nandagopal(at)ncl(dot)res(dot)in

Summary

Technology Summary	
Technology title	Continuous flow synthesis of sulphoxide compounds for use in drug formulations
Industry /sector	Pharmaceuticals
Year of development	2009
Related patents (with links)	Patent pending
Technology readiness level	Demonstrated at lab level
Licensing status	Ready to be licensed
Encumbrances	None
Availability	Yes

