CONTINUOUS FLOW SYNTHESIS OF SULPHOXIDE COMPOUNDS FOR USE IN DRUG FORMULATIONS

NCL Innovations: Solutions from CSIR India
Sulphoxide compounds such as modafinil/prazol compounds are currently produced by batch synthesis procedure

- The process yields about 85% product over a duration of 1-4 hours under low temperatures - leading to long processing times

A more efficient process is required at the industrial level

- These compounds are mainly used as proton pump inhibitors
- Which consumes less time and yields lower unnecessary side products continually unlike the batch synthesis procedure

Our process is a continuous flow synthesis of sulphoxide compounds with reaction times of ≤ 1 minute

- The reaction results in over 90% conversion and over 95% selectivity towards the target sulphoxide compounds (with less than 5% formation of undesired sulphone compounds)
Applications

- The process can be used to make the following drugs which are mainly used as proton pump inhibitors - used to make drugs to treat the acid-related diseases of the gastrointestinal (GI) tract
 - Such as omeprazole, pantoprazole, lansoprazole, tenatoprazole, rabeprazole, esomprazole

- The process can also be used to make drug molecules that can be used as modafinil compounds
 - Which can be used as central nervous system stimulants - wakefulness promoting agents*
 - In production of drugs which act as neuroprotective agents

Market Potential

- GI disorders have been projected to affect more than a 250 million people in the 7 large pharma markets by 2012\(^1\)
 - Overall GI tract disorders treatment market is expected to reach $32.2 billion by 2014\(^2\)
- In 2009, proton pump inhibitors were the third largest therapeutic class amounting up to $13.6 billion of sales in the US\(^3\)

\(^3\) http://www.imshealth.com/portal/site/imshealth/menuitem.a46c6d4df3db4b3d88f611019418c22a/?vgnextoid=d690a27e9d5b7210VgnVCM100000ed152ca2RCRD
Value

- Process capable of easy scale up
 - The process is continuous with the reaction time of \(\leq 1 \) minute
- Results in high yield of the product with 95% of selectivity towards the sulphoxide compounds
 - Side product (sulphone compounds) formation- less than 5%
- Conversion rate is > 90%
- The process provides an alternative solvent (to chloroform, which is a volatile solvent that evaporates at room temperature and changes the reaction mass)
Technology Status, IP Status

- Patent applications filed
- Demonstrated at lab scale
- Ready to be licensed/ commercialized
Links & References

- **Patent links**
 - Indian: 1392/DEL/2009
 - WO/ PCT application: PCT/IN2010/000456

Contact Info:

Dr. Magesh N.
Scientist, NCL Innovations National Chemical Laboratory
Pune - 411008
Phone: +91-20-2590-2982
Fax: +91-20-2590-2983
Email: m(dot)nandagopal(at)ncl(dot)res(dot)in
Technology Summary

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology title</td>
<td>Continuous flow synthesis of sulphoxide compounds for use in drug formulations</td>
</tr>
<tr>
<td>Industry /sector</td>
<td>Pharmaceuticals</td>
</tr>
<tr>
<td>Year of development</td>
<td>2009</td>
</tr>
<tr>
<td>Related patents (with links)</td>
<td>Patent pending</td>
</tr>
<tr>
<td>Technology readiness level</td>
<td>Demonstrated at lab level</td>
</tr>
<tr>
<td>Licensing status</td>
<td>Ready to be licensed</td>
</tr>
<tr>
<td>Encumbrances</td>
<td>None</td>
</tr>
<tr>
<td>Availability</td>
<td>Yes</td>
</tr>
</tbody>
</table>