


NANOGOLD-LOADED SHARP-EDGED CARBON BULLETS AS GENE CARRIERS

NCL Innovations: Solutions from CSIR India

NOILUIOS

Technology

- With increasing research being directed towards genetic manipulation, the requirement for the ideal gene delivery vehicle is becoming vital
 - Need to overcome current limitations of viral (toxicity, limited cargo capacity, quality control etc.)/other non-viral vectors (used mostly in animal cells)
 - Most of the carriers are administered to animal cells- very few options for plant cells
 - The process for preparation of the carriers needs to simple, easy to implement

- Adequate capacity to carry genetic material
- Sharpness to penetrate hard material, with less damage (a comparatively lower force of 0.1-0.2 nN required for penetration)
- Intracellular gold particles (biogenic) synthesized by a fungus in situ, embedded on a carbonaceous matrix
- Can be delivered with a convenient delivery gun

Applications

- Gene therapy
- Improved gene delivery for research and other applications
- Potential applications
 - DNA based immunization
 - To study gene function and its regulation
 - To establish various disease models
- Metal ion removal
- Fuel cells
- Anti bacterial applications
- Catalysis

Market Potential

- The total market for nanobiotechnology products is forecasted to reach a market size of about \$30 billion in 2015¹
- Nanomedicines market is projected to rise to almost \$60 billion in 2014²
 - Medical applications also include drug delivery and microbicides
- Gene therapy is a major field for gene delivery applications
 - A lot of R&D is being conducted in this area to achieve the most desirable characteristics of a gene carrier
 - $lue{}$ The market for gene therapy is expected to face a growth to \$5.7 billion in 2011 3

²http://www.marketresearch.com/product/display.asp?productid=2745365 (viewed- 10/06/11)

³http://www.outsourcing-pharma.com/Preclinical-Research/Gene-therapy-market-suffers-growth-setbacks (viewed- 10/06/11)

Value

- Preparation process is very simple and easy to implement
- The carbon matrix forms 95% of the carrier reducing the amount of gold needed and the plasmid used per transformation
- Advantages of usage of gold particles
 - High DNA packing density
 - Better transformation efficiency
 - Low nuclease degradation
 - Being in nano scale, higher surface area is obtained- more gene cargo handled

Carbon support

- Inert and less damage causing- wound caused due to penetration healed faster
- Better piercing capacity, for example, can effectively pierce hard plant cell walls
- Less force required to penetrate the plasma membrane as compared to silver nano needles

Technology Status, IP Status

- Patent application filed
- Demonstrated at lab scale
- Ready to be licensed/commercialized

Links & References

- Prasad, B.L.V. et al. (2010) Nanogold-Loaded Sharp-Edged Carbon Bullets as
 Plant-Gene Carriers, Advanced Functional Materials, 20, 2416-2423
- Torney, F. et al. (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants, nature nanotechnology, 2, 295-300
- Nie, L. et al. (2006) Three-Dimensional Functionalized Tetrapodlike ZnO
 Nanostructures for Plasmid DNA Delivery, small, 2 (5), 621-625
- PCT application filed

Contact Info:

Dr. Magesh N.

Scientist, NCL Innovations National Chemical Laboratory

Pune - 411008

Phone: +91-20-2590-2982 Fax: +91-20-2590-2983

Email: m(dot)nandagopal(at)ncl(dot)res(dot)in

Summary

Technology Summary	
Technology title	Nanogold-Loaded Sharp- Edged Carbon Bullets as Gene Carriers
Industry /sector	Biotechnology; Bio-pharma
Year of development	2010
Related patents (with links)	Patent application filed
Technology readiness level	Demonstrated at lab level
Licensing status	Ready to be licensed/commercialized
Encumbrances	None
Availability	Yes

